Monetizing Energy Storage A Toolkit to Assess Future Cost and Value

Oliver Schmidt, Imperial College London

15th International Green Energy Conference

Glasgow, 12 July 2023

Renewables (RE) are the future of electricity generation

Cost:

Levelized cost of electricity (USD/MWh)

Share:

Share of low-carbon electricity generation

Data from the IPCC 6th Assessment Report

Flexibility is needed to match RE supply and demand

UK storage capacity 2022Pumped storage: 30 GWh

• Battery storage: 3 GWh

UK storage capacity 2022

- Fossil fuels: 100 TWh
- Pumped storage: 0.03 TWh

Electricity storage is <u>one form</u> of flexibility

There is a wide range of energy storage technologies...

... that all have very different characteristics

Energy capacity

At the same time, there is a wide range of applications...

In addition, prices of selected technologies are falling fast

In addition, prices of selected technologies are falling fast

9

Similar trends are seen across many storage technologies

Lifetime cost is <u>the</u> metric for economic decision-making

Schmidt & Staffell (2023): Monetizing Energy Storage

Comparisons should use application-specific lifetime cost

Providing peak capacity (300 cycles per year x 4 hours per cycle):

Lithium-ion:

(362 USD/kWh capex, 86% efficiency, 3500 cycle lifetime)

Vanadium redox-flow:

(625 USD/kWh capex, 68% efficiency, 20000 cycle lifetime)

The competitiveness of technologies will change over time

PC) Peak capac	ity	OS I	00%
Power capacity	10 MW	est LC	80% -
Discharge duration	4 hours	f low	60% -
Annual cycles	300	lity o	40% -
Response time	>10 seconds	babi	20% -
Electricity price	50 USD/MWh	Pro	0%

 \frown

Current costs and how fast they fall with scale-up determines which technologies win each application

Circles denote typical power system applications: (ST) Inter-seasonal storage *(not currently monetized)* — (RL) Power reliability — (TD) Transmission & distribution investment deferral — (RE) Renewables integration — (SC) Increasing self-consumption — (PC) Peaking capacity — (EA) Energy arbitrage — (BS) Black start — (DR) Demand charge reduction — (CM) Congestion management — (FS) Frequency response (ramping / inertia) — (FG) Frequency regulation (power quality) — (HC) High cycle *(not currently monetized)*

Currently, offering 4-10 hours of storage is the cheapest Moving energy between seasons will cost ~10x more

In terms of revenue, there is limited value to moving energy over longer time horizons

In terms of revenue, there is limited value to moving energy over longer time horizons

Increase in profitability beyond 8-hour arbitrage is marginal

(a) Profit (USD/kW-year)

Based on day-ahead wholesale prices from 2012-19 in various markets

But, we do need to deploy TWh-scale seasonal storage!

US & EU seasonal natural gas storage:

Routes forwards:

- Develop low-cost long-duration storage technologies
- Provide markets beyond arbitrage to remunerate long-duration storage

All insights available in one book...

"Essential for me as an investor to navigate this complex, fast-paced energy storage industry." **Gerard Reid, Alexa Capital**

"Ground-breaking – an essential read" Professor Dan Kammen, UC Berkeley

"The go-to resource ... exemplary in terms of academic rigour set in a real-world context" **Professor Jim Skea, IPCC**

Search: Monetizing Energy Storage

MONETIZING ENERGY STORAGE

Outon August 8 2023

a toolkit to assess future cost and value

OLIVER SCHMIDT • IAIN STAFFELL

OXFORD

... and all analyses can be re-produced by you!

You can reproduce and customise all the analyses presented here:

www.EnergyStorage.ninja

Pumped hydro most widely deployed – batteries catch up

Lithium-ion batteries use surprisingly little lithium

Raw material prices must quadruple for real impact

China dominates the lithium-ion value chain

Falling prices can be expressed by their 'experience curve'

Solar PV modules [USD/kW]

