Imperial College London

Cost projections for electrical energy storage

Oliver Schmidt,
Adam Hawkes, Ajay Gambhir, Iain Staffell

Bergen Economics of Energy and Environment Research Conference 22-23 May | NHH, Bergen

The need for electrical energy storage

Electrical energy storage technologies

Question: How much will storage cost?

"Our results show that [...] CO_{2} emissions [...] can be reduced by up to 80\% [...], without electrical storage."

"Production of cylindrical 2170 Liion cells used in Powerwall 2 started on January 4 ${ }^{\text {th }}$ 2017."
" 15 GWh p.a. will be devoted to stationary battery packs."

Example: Residential Li-ion systems (inst.)

Average: 3,000 \$/kWh

Powerwall 1: 1,100 \$/kWh

Powerwall 2: $500 \$ / \mathrm{kWh}$

October 2013

Sources: Tepper, M. Solarstromspeicher-Preismonitor Deutschland 2016. (Bundesverband Solarwirtschaft e.V. und Intersolar Europe, 2016) www.solarfixni.co.uk/solarpanelsystems/tesla/
www.tesla.com/powerwall

Method: Experience curve analysis

Result: Energy storage experience curves

Costs for installed stationary systems fall to 280-400 \$/kWh once 1 TWh is built

Based on raw material costs as lower boundary, identified price range is feasible

Analysis: Timeframe of cost reduction

Experience curves
(f: cumulative capacity)

Growth rate

(in cumulative capacity)

Projections for residential Li-ion systems are on higher end of similar estimates

Analysis: Levelised cost of storage (LCOS) for residential PV-coupled systems

Definition

Constant price per $\mathrm{kWh}_{\text {discharge }}$ at which net present value of storage project is zero

Formula

$$
\text { LCOS }=\frac{\text { CAPEX }+O \& M(\text { disc. })+\text { Charging cost }(\text { disc. })+\text { Residual value }(\text { disc. })}{\text { Total energy discharged }(\text { disc. })}
$$

Input Parameters

Capital cost	see exp curve	Lifetime	10 years
O\&M cost	0%	Cycles	250 p.a.
Charging cost (PV)	$0.14-0.05 \$ / \mathrm{kWh}$	Depth-of-discharge	80%
Residual value	0%	Round-trip efficiency	92%
WACC	5%	Annual degradation	1%

Residential storage for PV self-consumption unlikely to be economic before 2035

Questions?

Oliver Schmidt | PhD Researcher in Energy Storage
Grantham Institute - Climate Change and the Environment Imperial College London, Exhibition Road, London SW7 2AZ
Tel: +44 (0) 7934548736
Email: o.schmidt15@imperial.ac.uk

Formula - Levelised Cost of Storage

$$
\begin{aligned}
L C O S= & \frac{C A P E X}{\# \text { cycles } * D O D * C_{\text {rated }} * \sum_{n=1}^{N} \frac{(1-D E G * n)}{(1+r)^{n}}} \\
& +\frac{O \& M * \sum_{n=1}^{N} \frac{1}{(1+r)^{n}}}{\# \text { cycles } * D O D * C_{\text {rated }} * \sum_{n=1}^{N} \frac{(1-D E G * n)}{(1+r)^{n}}} \\
& -\frac{\frac{V_{\text {residual }}}{(1+r)^{N+1}}}{\# \text { cycles } * D O D * C_{\text {rated }} * \sum_{n=1}^{N} \frac{(1-D E G * n)}{(1+r)^{n}}} \\
& +\frac{P_{\text {elec-in }}}{\eta(D O D)}
\end{aligned}
$$

Electric vehicles could be competitive with conventional cars between 2022 and 2034

