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Last week’s news

Atmospheric CO2 concentration is rising at 

record levels
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The Guardian (30 October 2017)

Zeit Online (30 October 2017)

Reuters (30 October 2017)



Atmospheric CO2 concentration

CO2 levels must stay below 500 ppm to 

limit temperature rise to 1.1-2.6 ˚C
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+1.1 - 2.6 ˚C

Source: WMO Greenhouse Gas Bulletin No. 13. The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2016. World Meteorological 

Organisation. (30 October 2017)



Decarbonisation of electricity generation

For that to happen, global electricity 

generation must be carbon-free by 2050

4Source: IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel 

on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. 



Electricity storage could play a critical role 

in low-carbon energy systems
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Source: Icons made by Freepik from www.flaticon.com



But, the future role of electricity storage 

is still perceived as highly uncertain
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Uncertainty on role of storage

Source: World Energy Issues Monitor 2017 | Exposing the new energy realities. World Energy Council; 2017.



Recent cost developments

Although costs for lithium-ion batteries 

have fallen dramatically in recent years

7Sources: Tepper, M. Solarstromspeicher-Preismonitor Deutschland 2016. (Bundesverband Solarwirtschaft e.V. und Intersolar Europe, 2016); 

www.solarfixni.co.uk/solarpanelsystems/tesla/; www.tesla.com/powerwall

October 2013 April 2015 October 2016

Average: 3,000 $/kWh

Powerwall 1: 1,100 $/kWh

Powerwall 2: 500 $/kWh



Approach

A consistent method to project cost for 

multiple technologies is needed
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Technology

• Cost analyses are focussed on lithium-ion 

• A holistic assessment should cover multiple technologies

Scope

• Cost quotes refer to different technology components

• A transparent analysis should clarify reference scope

Method

• Cost projections are made with varying methods

• An objective and consistent method should be chosen

Source: www.flaticon.com



Dataset

We derive a 1st-of-its-kind experience 

curve dataset for storage technologies...

9Source: O. Schmidt, A. Hawkes, A. Gambhir & I. Staffell. The future cost of electrical energy storage based on experience rates. Nat. Energy 2, 17110 (2017)
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Result

... that enables evidence-based cost 

projections
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Sanity Check – Raw material cost

Raw material costs suggest that these cost 

projections are not infeasible
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Sanity Check – Investment requirement

Required investments in deployment to 

achieve projected costs appear sensible
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However, experience rates of immature 

technologies can be highly uncertain
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Uncertainty Check

Source: Junginger M, van Sark W, Faaij A. Technological learning in the energy sector: Lessons for policy, industry and science. Cheltenham: Edward Elgar Publishing; 2010.
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However, experience rates of immature 

technologies can be highly uncertain
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Uncertainty Check

Source: O. Schmidt, A. Hawkes, A. Gambhir & I. Staffell. The future cost of electrical energy storage based on experience rates. Nat. Energy 2, 17110 (2017)



However, experience rates of immature 

technologies can be highly uncertain
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Uncertainty Check
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However, experience rates of immature 

technologies can be highly uncertain
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Uncertainty Check
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Source: O. Schmidt, A. Hawkes, A. Gambhir & I. Staffell. The future cost of electrical energy storage based on experience rates. Nat. Energy 2, 17110 (2017)

“Notably, the two-factor model explains 

the recent plunge of battery prices better 

than both conventional models using 

economies of scale or a classic experience 

curve approach.”



Analysis 1 – Capital cost projection

The cost of installed utility-scale lithium-

ion systems fall to 290-740 $/kWh by 2030
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Analysis 2 – Investment comparison

Instead of a nuclear plant, the UK could 

have doubled its existing storage capacity

18

Cost: US$24 billion

Completion: 2025

OR

3.2 GW baseload capacity

“Meet 5-10% of UK demand”

35 GWh storage capacity

“Double UK’s storage capacity”

Source: Own Analysis



Analysis 3 – Competitiveness (Home storage)

The market for home storage appears 

poised for growth...

19Source: www.tesla.com/powerwall; L. Goldie-Scot, Global Energy Storage Forecast 2016-24, Bloomberg New Energy Finance, 2016.
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Analysis 3 – Competitiveness (Home storage)

with cost of installed residential li-ion 

systems falling to 300-780 $/kWh by 2030
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780$/kWh

300$/kWh

520$/kWh

Source: Own Analysis
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Analysis 3 – Competitiveness (Home storage)

Still, residential batteries are unlikely to 

make economic sense in GER before 2030
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Timespan

Source: Own Analysis
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Analysis 4 – Power system models (Approach)

Including storage cost forecasts in power 

system models informs on abatement cost

22

Experience Curves Power System Model (UK)

Future cost for three storage technologies: 1. Baseline scenario 

2. Storage scenario

3. Marginal abatement cost

P2G Flow Li-ion

Duration 20h 6h 3h

Efficiency 30% 75% 85%

Lifetime 15y 15y 15y



Analysis 4 – Power system models (Impact of storage)

We model storage in the power system 

where it reduces CO2 emissions at a cost
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... the marginal abatement cost of storage
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~300

Source: Own analysis

PtG Redox Li-ion
Duration 20h 6h 3h
Efficiency 30% 75% 85%
Lifetime 15y 15y 15y
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