Imperial College London

Projecting The Future Levelized Cost Of Electricity Storage Technologies

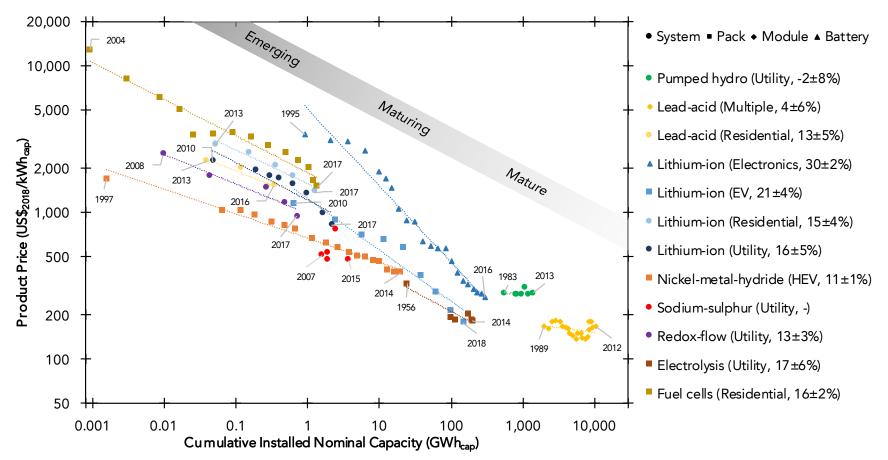
Oliver Schmidt

13 March 2019 International Renewable Energy Storage Conference Düsseldorf, Germany

Grantham Institute

The future role of storage is still uncertain

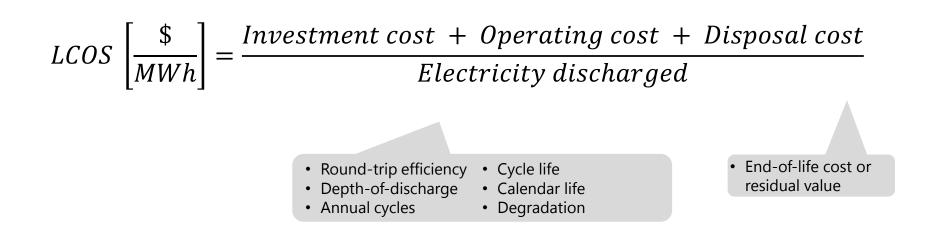
Problem


How much will electricity storage cost in the future

Which technology will be most cost-effective

Experience curve dataset for storage technologies can predict investment cost

Experience Curve Dataset


But, comparison of technologies must be based on levelised cost of storage (LCOS)

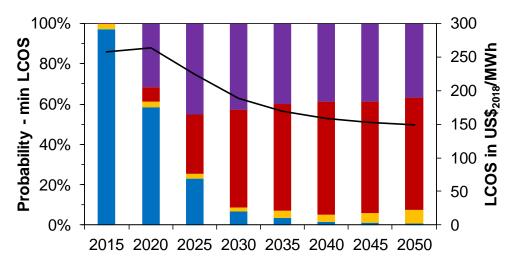
LCOS Formula

Construction time

- Replacement cost / interval
- Charging costO&M cost

The discounted cost of a "MWh" discharged from the storage device

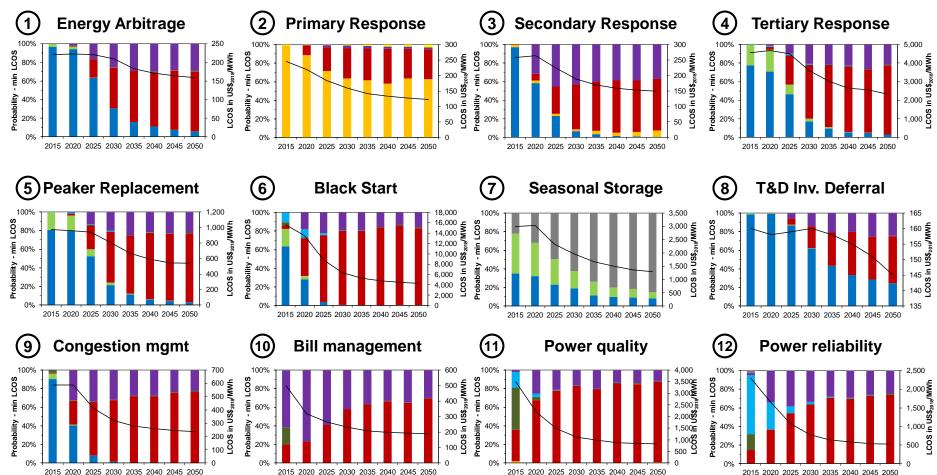
We model LCOS of 9 storage technologies in 12 power system applications up to 2050


Applications vs Technologies

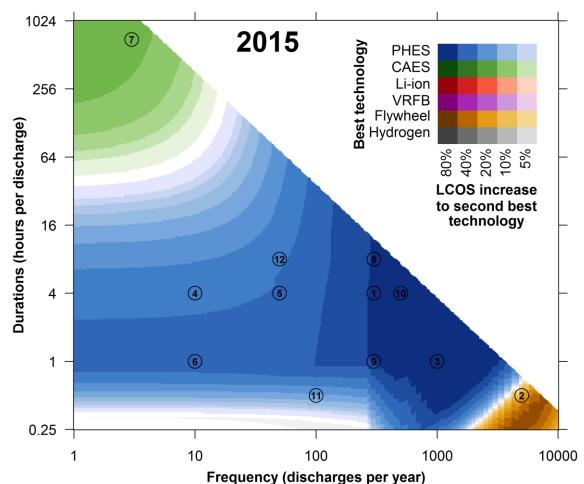

Role	Application	Pumped hydro	CAES	Fly- wheel	Li-ion	Sodium- sulfur	Lead- acid	VRFB	Hydro- gen	Super- cap.
	1. Energy arbitrage	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
System operation	2. Primary response			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
operation	3. Secondary response	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	4. Tertiary response	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
	5. Peaker replacement	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
	6. Black start	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	7. Seasonal storage	\checkmark	\checkmark					\checkmark	\checkmark	
Network operation	8. T&D upgrade deferral	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
operation	9. Congestion mgmt	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Consump tion	10. Bill management				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
	11. Power quality			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	12. Power reliability				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

Lithium-ion and vanadium redox-flow will compete for secondary response

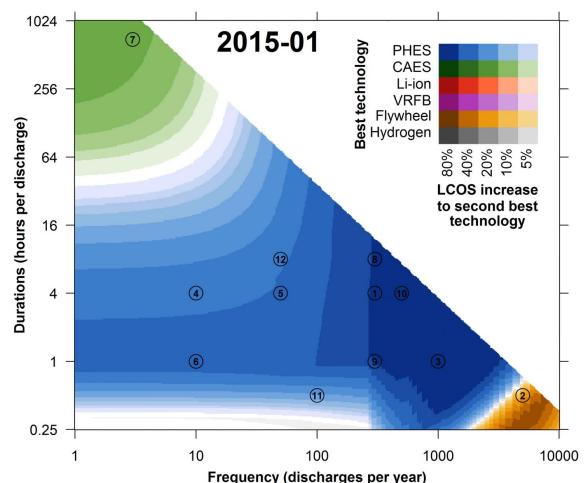
3 Secondary Response


Power capacity	100 MW
Discharge duration	1 hour
Annual cycles	1,000
Response time	>10 seconds
Electricity price	50 \$/MWh

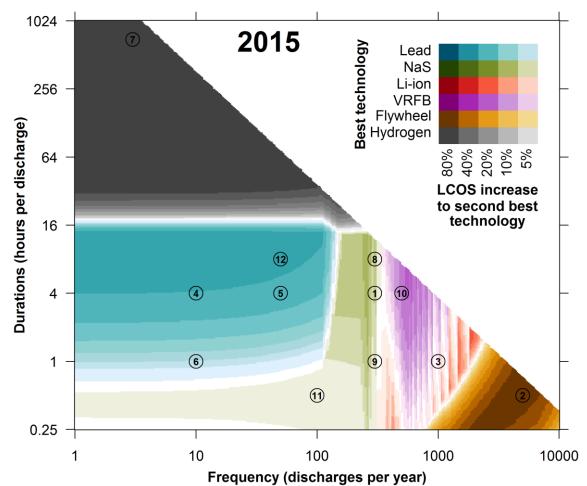
Lithium-ion becomes dominant technology in most applications by 2030


Application overview

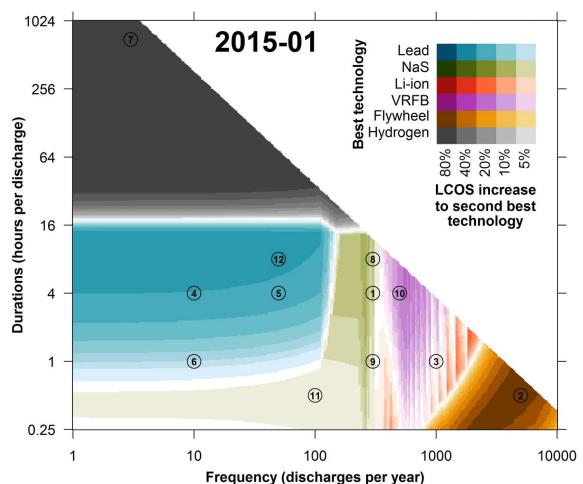
7


Overall, pumped hydro and compressed air give way to lithium-ion and hydrogen

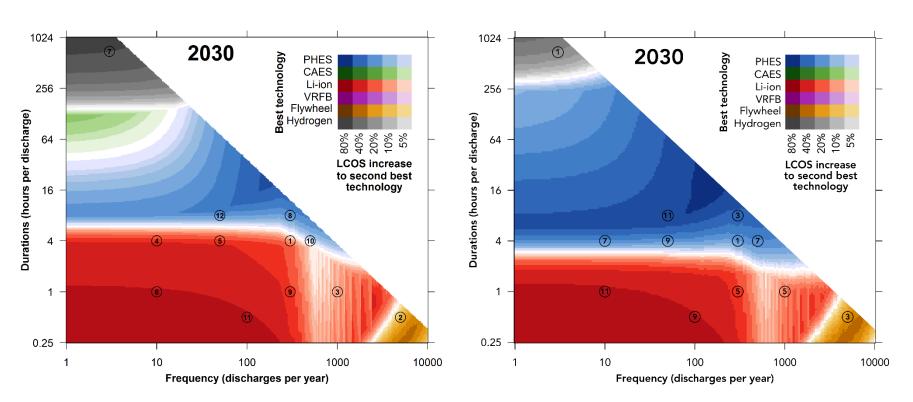
General overview


Overall, pumped hydro and compressed air give way to lithium-ion and hydrogen

General overview


Lithium-ion more competitive than all other battery technologies by 2030

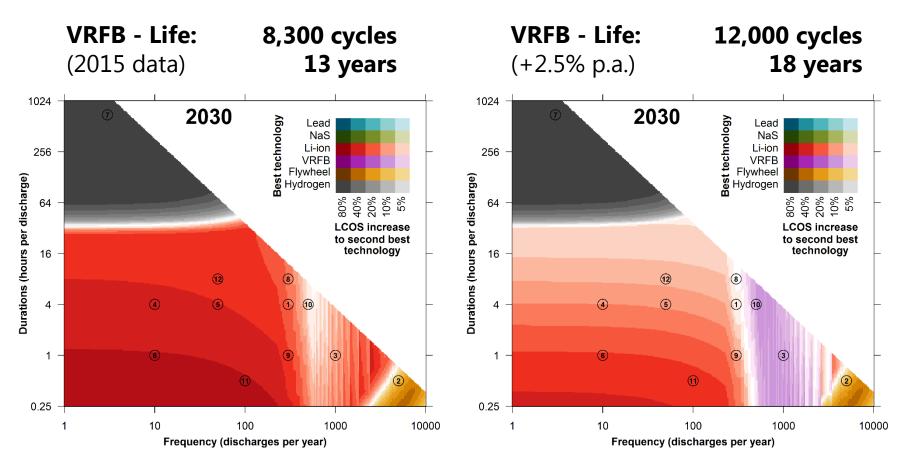
General overview – excl. PHS, CAES


Lithium-ion more competitive than all other battery technologies by 2030

General overview – excl. PHS, CAES

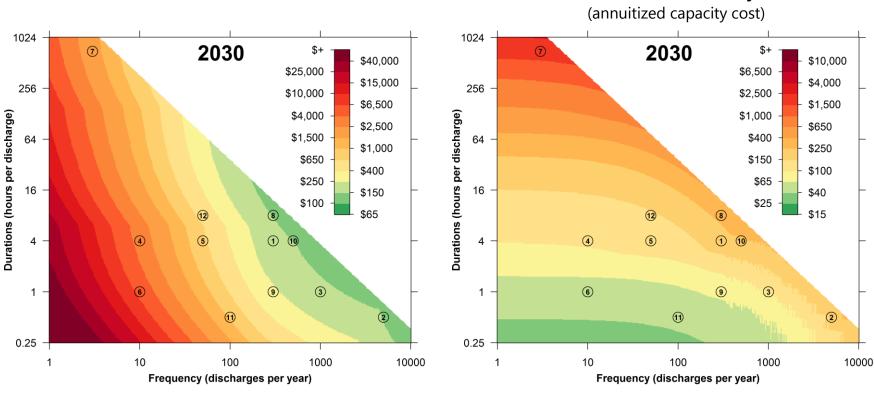
At discount rate of 4% pumped hydro competitive for most applications in 2030

Sensitivity – Discount rate



Discount rate: 8%

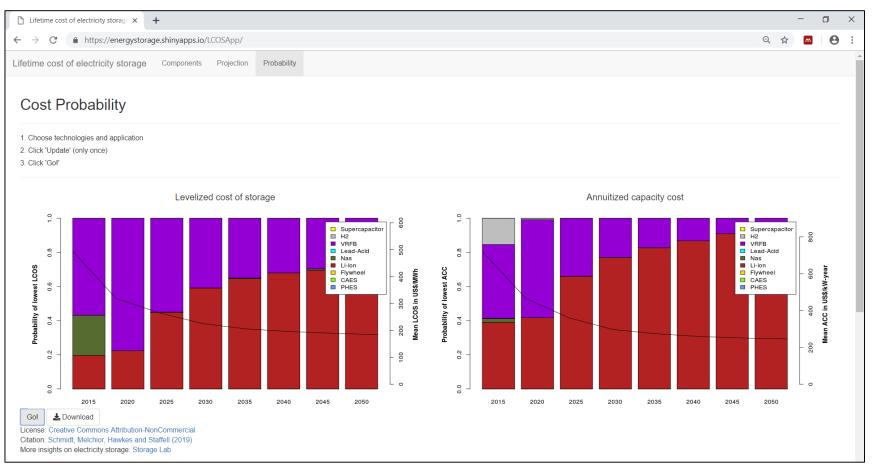
Discount rate: 4%


Life improvement of 2.5% p.a. since 2015 means VRFB cheaper than Li-ion in 2030

Sensitivity – Performance improvement

Future storage cost is a function of discharge duration and frequency

Future cost of electricity storage

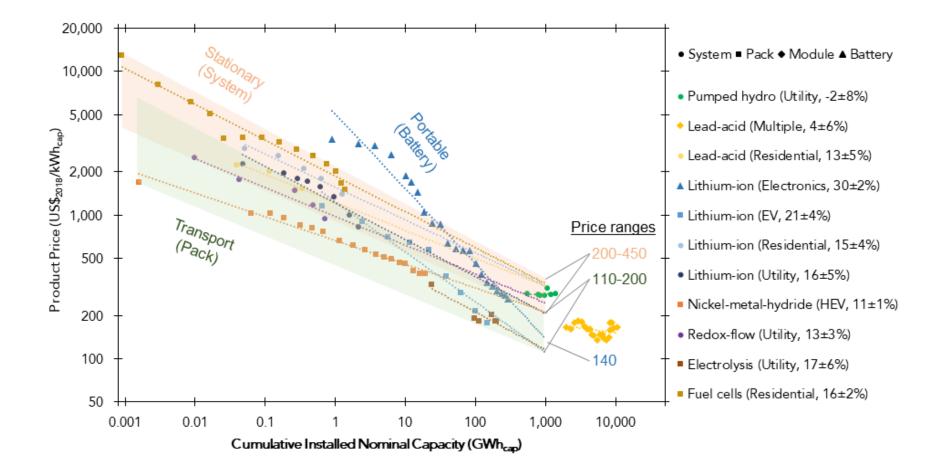

LCOS in US\$/kWh

Assumption: Electricity price = 50 US\$/MWh_{el}

ACC in US\$/kW_{year}

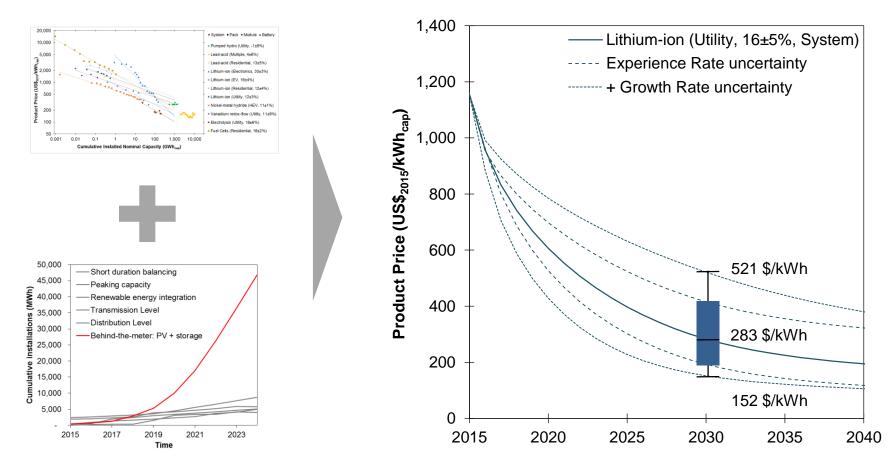
Test your own assumptions on <u>www.EnergyStorage.ninja</u>

Online Tool

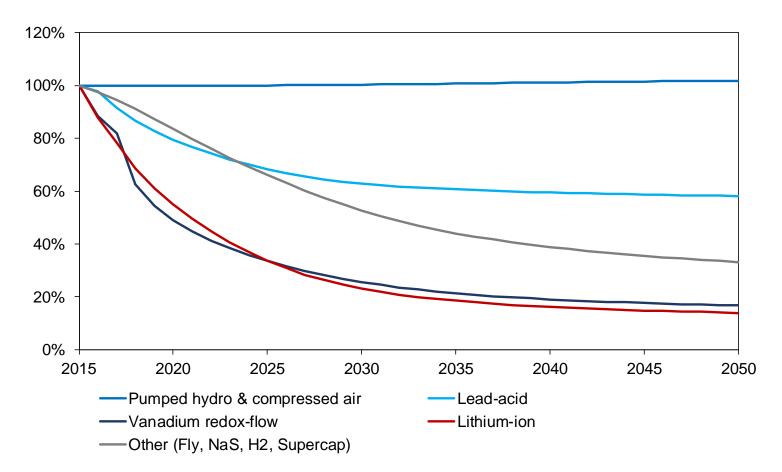


Questions & Discussion

Oliver Schmidt | PhD Researcher in Energy Storage Grantham Institute - Climate Change and the Environment Imperial College London, Exhibition Road, London SW7 2AZ Tel: +44 (0) 7934548736 Email: <u>o.schmidt15@imperial.ac.uk</u> Website: <u>www.storage-lab.com</u>


Grantham Institute

Projection of experience curves to analyze future investment cost


Experience curves combined with market forecasts enable future cost projection

Investment cost – Projection

Lithium-ion and vanadium redox-flow investment cost fall to 20%

Investment cost reduction

Application-specific LCOS account for all relevant cost and performance parameters

Formula – Detail

 $+\frac{P_{el}}{\eta_{RT}}$

 $LCOS \left| \frac{\$}{MWh} \right| =$ $Capex + \sum \frac{Capex_R}{(1+r)^{R*T_r}}$ $\overline{\#cycles * DoD * C_{nom_e} * \eta_{RT} * \sum_{n=1}^{N} \frac{(1+Deg)^n}{(1+r)^n}}$ $\sum_{n=1}^{N} \frac{Opex}{(1+r)^{n+T}}$ #cycles * DoD * $C_{nom_e} * \eta_{RT} * \sum_{n=1}^{N} \frac{(1 + Deg)^n}{(1 + r)^n}$ $\frac{Disposal}{(1+r)^{N+1}}$ $\frac{1}{\# cycles * DoD * C_{nom_{e}} * \eta_{RT} * \sum_{n=1}^{N} \frac{(1 + Deg)^{n}}{(1 + r)^{n}}}$

Capex: Investment cost (\$) Capex_r: Replacement cost (\$) Opex: Operating cost (\$) Disposal: Disposal cost (\$) P_{el}: Power cost (\$/kWhel) Discount rate (%) r: C_{nom_e}: Nominal capacity (MWh) DoD: Depth-of-discharge (%) N: Lifetime (years) #cycles: Full cycles per year (#) Deg: Annual degradation (%) Period (year) n: T_r: R: Replacement interval (years) Replacement number (#) T_c Construction time (years)

Note: Construction time and self-discharge not explicitly considered for simplification; these parameters affect capex and period, and discharged energy respectively.

20

There are many key cost and performance characteristics for electricity storage

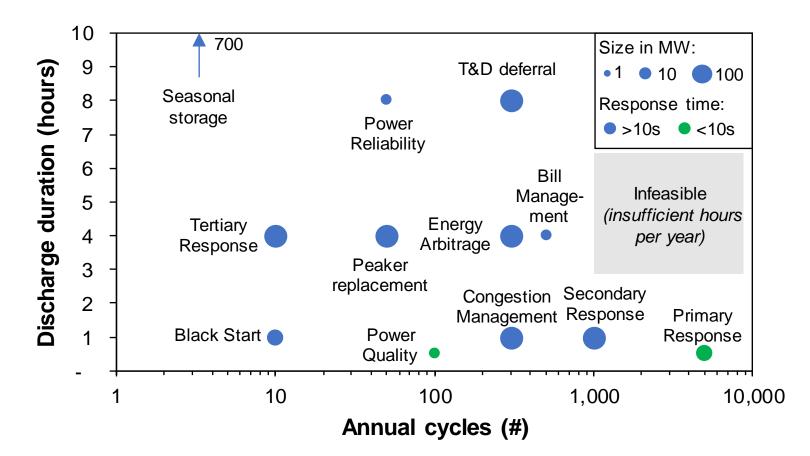
Key cost and performance parameters

Cost		Performance				
Investment cost	Cost to construct technology overnight (total vs specific)	Nominal power capacity	Maximum amount of power generated			
Construction time	Actual duration of technology construction	Discharge duration	Maximum duration to discharge energy at maximum power			
Replacement cost	Cost to replace technology components	Nominal / Usable energy capacity	Maximum amount of energy stored Usable amount of energy stored			
Replacement interval	Time interval at which technology component replacement is required	Depth-of- discharge	Maximum energy that can be used without severely damaging the store			
O&M cost	Cost of operating and maintaining operability of technology	Cycle life	Number of full charge-discharge cycles before end of usable life			
Charging cost	Cost for energy to technology with energy	Calendar life	Number of years before end of usable life (even at no operation)			
Disposal cost / Residual value	Cost to dispose of the technology at its end-of-life (can be negative)	Degradation	Loss in usable energy capacity			
Discount rate	Rate at which future cost / revenues of technology are discounted	Round-trip efficiency	Proportion of energy discharged over energy required to charge store			

All cost and performance parameters relevant during technology life considered

Technology input parameters

			Pumped hydro	Compressed air	Flywheel	Lithium- ion	Sodium- sulphur	Lead- acid	Vanadium redox-flow	Hydrogen	Super- capacitor
Investment cost - Power	\$/kW	CP	1129 (45%)	871 (35%)	641 (17%)	678 (17%)	657 (27%)	675 (23%)	829 (21%)	5417 (48%)	296 (31%)
Investment cost - Energy	\$/kWh	CE	60 (80%)	39 (58%)	5399 (67%)	802 (24%)	738 (12%)	471 (38%)	760 (17%)	31 (60%)	13560 (19%)
Operation cost - Power	\$/kW- <mark>yr</mark>	Ср-ом	8 (26%)	4 (23%)	7 (8%)	10 (35%)	11 (50%)	8 (31%)	12 (52%)	46 (30%)	0 (0%)
Operation cost - Energy	\$/MWh	СЕ-ОМ	1 (60%)	4 (60%)	2 (60%)	3 (60%)	3 (60%)	1 (60%)	1 (60%)	0 (60%)	0 (60%)
Replacement cost	\$/kW	C _{P-r}	116 (5%)	93 (5%)	199 (44%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	1637 (48%)	0 (0%)
Replacement interval	cycles	Cycr	7300	1460	22500	3250	4098	1225	8272	6388	69320
End-of-life cost	%	FEOL	0%	0%	0%	0%	0%	0%	0%	0%	0%
Discount rate	%	DR	8%	8%	8%	8%	8%	8%	8%	8%	8%
Round-trip efficiency	%	DRI	78% (9%)	44% (16%)	88% (3%)	86% (7%)	81% (6%)	84% (0%)	73% (9%)	40% (13%)	91% (6%)
Self-discharge	%/day	Nseit.idle	0%	0%	480%	0%	20%	0%	0%	1%	30%
Lifetime (100% DoD)	cycles		33250 (43%)	16250 (20%)	143402 (30%)	3250 (38%)	4098 (29%)	1225 (35%)	8272 (13%)	20000 (0%)	300000 (67%)
Shelf life	years	I shelt	55 (9%)	30 (33%)	18 (14%)	13 (38%)	14 (20%)	10 (50%)	13 (20%)	18 (14%)	14 (33%)
Response time	seconds		>10	>10	<10	<10	<10	<10	<10	<10	<10
Time degradation	%/year	Ldeg	0.4%	0.7%	1.3%	1.7%	1.6%	2.2%	1.7%	1.3%	1.6%
Cycle degradation	%/cycle	Cycdea	0.0007%	0.0014%	0.0002%	0.0069%	0.0054%	0.0182%	0.0027%	0.0011%	0.0001%
Construction time	years	Tc	3	2	1	1	1	1	1	1	1
Sources			1,7,12–15	1,7,12–14,16,17	1,3,7,12–14	7,9,13,14,18	1,7,9,13,14,18	1,7,12–14,19,20	1,7,9,13,14	7,13,14,21–24	7,12–14


Impact of depth-of-discharge on cycle life is considered

Depth-of-discharge

Depth-of-Discharge	Pumped hydro	Compressed air	Flywheel	Lithium- ion	Sodium- sulphur	Lead- acid	Vanadium redox-flow	Hydrogen	Super- capacitor
100%	33,250	16,250	143,402	3,250	4,098	1,225	8,272	20,000	300,000
90%	33,250	16,250	143,402	4,875	4,131	1,336	8,272	20,000	300,000
80%	33,250	16,250	143,402	6,297	4,193	1,501	8,272	20,000	300,000
70%	33,250	16,250	143,402	8,531	4,592	1,763	8,272	20,000	300,000
60%	33,250	16,250	143,402	10,766	5,299	2,074	8,272	20,000	300,000
50%	33,250	16,250	143,402	14,219	6,006	2,598	8,272	20,000	300,000
40%	33,250	16,250	143,402	18,586	7,050	3,194	8,272	20,000	300,000
30%	33,250	16,250	143,402	24,984	8,516	4,211	8,272	20,000	300,000
20%	33,250	16,250	143,402	35,953	10,654	6,316	8,272	20,000	300,000
10%	33,250	16,250	143,402	60,734	21,325	13,183	8,272	20,000	300,000
Source				25	26	19			

Modelled applications cover entire spectrum of performance requirements

Applications – Detail

