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Renewables are the future of electricity generation

Cost: Share:
Levelized cost of electricity (USD/MWh) Share of nuclear and renewable generation
. 100%
400 PV fixed .
PV, tracking Range of IPCC Scenarios
—Wind, offshore — Historical
——Wind, onshore 80%
300 —Gas
—Coal
—Battery (4-hour) 60%
200
40%
100
20%
0 0%

2010 2012 2014 2016 2018 2020 2022 2000 2010 2020 2030 2040 2050



Flexibility is needed to match Renewables and demand
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Electricity storage is one form of flexibility
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All storage technologies belong to five categories

SSS - Sensible heat Gravitation
Latent heat

Thermochemical heat

Compression

Motion

3:%) * Hydrogen

Ammonia * Capacitance

Hydrocarbons * Inductance
Alcohols Electrochemical

Sealed batteries
” Flow batteries

A A A A A A A

QO0000000000,




Battery systems have various cost components

System scope Components

CE Cell e Electrodes e Electrical ~35%
 Electrolyte contacts

PA Pack e Cellconnectors e Battery mgmt. ~15%
« Housing system (“BMS”)

BOS Balance-of- ¢ Container e Thermalcontrol ~10%

system « Monitors, controls e Fire suppression
PCS Power e Inverter/converter ¢ Energy mgmt. ~10%

conversion . Data management system (“EMS”)

SI System e Assembly of e Tailoring to ~5%
integration components application

PD Project e Land acquisition e Financial and ~10%
development . pgrmits technical studies

D&l Distribution & ¢ Engineering e Construction ~15%

Installation e Procurement e Commissioning




Pumped hydro most widely deployed - batteries catch up

2020 stationary storage deployment Stationary vs. Transport
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The different technologies are used for different applications
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Longer duration storage needed as power system evolves

. Archetype Deployment Discharge Response
Phase Description application potential duration time
Pre- Integrated energy market & : Mostly :
<20% Various Minutes
. ’ 2010 low-cost nuclear power ) 8-12 hours
%: 1 Restructured energy market & Frequency ) < 1 hour Milliseconds
reducing system inertia regulation 0 seconds
> ducing syst rt gulat t d
© : :
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b . . - - .
= 2 reducing RE+storage cost capacity A 2-6 hours to minutes
Q
S RE+storage cost lower than Renewables :
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= I other generators Integration -
L
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Range of specific energy storage applications is much wider

Location in power system
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Falling prices can be expressed by their ‘experience curve’

Solar PV modules [USD/kW]
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Lithium-ion prices fall at a similar rate as solar PV

Lithium-ion battery pack [USD/kWh]
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Similar trends are seen across other storage technologies

Product price (USD/kWh_,)

20,000 T T T T T T T T
Scope:
" é\/);@/‘ ¢ System
7 .
10,000 + . Z | Pack
I . A Cell
- -..
I - G
5,000 o,%?
i LI L -
& ; ta
| R ., | ... /h
2,000 : : i, A C?g‘c//_@
Chd ., e o
© . ". .
1,000 1 . e ' |
500 | iy
o A . ‘__.:_. -
200 |
0.001 0.01 0.1 1 10 100 1,000 10,000

Cumulative installed nominal capacity (GWh_,)

Technology:

e Pumped hydro (Utility, -3 £ 6%, 1983-2018)

e Lead-acid (Residential, 12 £ 5%, 2013-16)

= Lithium-ion (EV packs, 24 + 2%, 2010-21)

e Lithium-ion (Utility, 19 + 3%, 2010-21)
Sodium-sulphur (Utility, N/A, 2007-21)
Electrolysis (Utility, 20 £ 11%, 1956-2019)
Lead-acid (Multiple, 4 £ 6%, 1989-2012)
Lithium-ion (Electronics, 30 + 2%, 1995-2016)

e Lithium-ion (Residential, 13 * 3%, 2013-21)

= Nickel-metal hydride (HEV, 11 £ 1%, 1997-2014)
Vanadium redox-flow (Utility, 14 + 4%, 2008-19)

= Fuel cells (Residential, 17 + 2%, 2004-20)
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The tech that brings most capacity to market is cheapest
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Schmidt & Staffell (2023): Monetizing Energy Storage

Scope:
e System
= Pack
A Cell

Technology:

e Pumped hydro (Utility, 295 USD/kWh)
e Lead-acid (Residential, 252 USD/kWh)
= Lithium-ion (EV packs, 113 USD/kWh)
e Lithium-ion (Utility, 93 USD/kWh)
Vanadium flow (Utility, 200 USD/kWh)
m Fuel cells (Residential, 276 USD/kWh)
Lead-acid (Multiple, 181 USD/kWh)
Lithium-ion (Electronics, 142 USD/kWh)
e Lithium-ion (Residential, 565 USD/kWh)
= Nickel-metal hydride (HEV, 205 USD/kWh)
Electrolysis (Utiliy, 98 USD/kWh)
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Lifetime cost of energy delivered is a more important metric

e Accounts for all cost Cost to * Reflects round-trip efficiency, Can be a cost or a
components required to operate, because more energy is value depending
serve specific application insure and purchased than discharged on the reusability
(e.g. power conversion to periodically (respective power price or recyclability of
enable fast response) service depends on application) the technology, its

* Includes replacement cost to technology * Thereby also accounts for components and
account for degradation components auxiliary energy (e.g. AC) raw materials

US$ Investment + O&M + Charging + End of life

MWh Energy capacity - Cycles per year - Lifetime

Levelised Cost
Of Storage

LCOS [

* Electricity that is discharged each
cycle; should include annual
degradation

* Determined by application * Option 1 - Technical: Number of
served by the storage system years after which energy capacity
degraded to e.g. 80%

: .  Can have significant impact on
« If it refers to electricity charged Ve sig b

: . degradation and overall * Option 2 - Economic: Pre-
(against common practice), e R :
: . lifetime as cycle life is limiting defined number of years, e.g.
round-trip efficiency and DoD :
factor for most technologies secured revenue

must be accounted for here

Schmidt & Staffell (2023): Monetizing Energy Storage 15



Comparisons should use application-specific lifetime cost

Providing peak capacity (300 cycles per year x 4 hours per cycle):

Lithium-ion: Vanadium redox-flow:
(362 USD/kWh capex, 86% efficiency, 3500 cycle lifetime) (625 USD/kWh capex, 68% efficiency, 20000 cycle lifetime)

USD 365.51 / MWh

350
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5212 300 -
a00 | _ USD 289.73 / MWh
O Charging | O  End-of-life
%58.73 250 -54.82
= i
g 250 |- i
= O O&aM - O Charging
& %6.19 = 200 L §73.53
g 200 =
= O Okl
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W
150 |
8 150 B 2 0 Replacement
3 I O  Investment - £3.86
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The competitiveness of technologies will change over time
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Depending on the applications, different technologies win
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All content of this presentation comes from one book

“Essential for me as an investor to navigate this

complex, fast-paced energy storage industry.”
MONETIZING Gerard Reid, Alexa Capital
ENERGY

“A must-read for industry and policy

STORAGE professionals.”

a toolkit to assess future cost and value

Julia Souder, Long Duration Storage Council

OLIVER SCHMIDT & IAIN STAFFELL

* Published next month
* Digital version is for free

e Download link:
https://global.oup.com/academic/product/
monetizing-energy-storage-9780192888174
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https://global.oup.com/academic/product/monetizing-energy-storage-9780192888174
https://global.oup.com/academic/product/monetizing-energy-storage-9780192888174

All analyses can be re-produced by you!

Energy storage analysis toolkit

Project economics Cost components Cost variation Cost projection Investment cost projection Competitive landscape Storage dispatch System need System value

Competitive landscape

1. Choose technology
2. Click 'Load values' to obtain respective input parameters
3. Manually refine parameters based on your own insights if needed and click 'Save values'

4. Click 'Go!" to identify the most cost-competitive technology across the application landscape

www.EnergyStorage.ninja
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Licensé: Creative Commons Attribution-NonCommercial
More insights on electricity storage: Storage Lab



http://www.energystorage.ninja/

Lithium-ion batteries use surprisingly little lithium

(a) LFP-G (b)

NMC-G

Lithium €® A Phosphoric acid ¢ Lithium
Weight: 8% Weight: 8% Weight: 7%
Cost: 25% Cost: 2% Cost: 10%

*A

B Anode & Cathode A Electrolyte ® Current collectors

@ Other pack components
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Raw material prices must quadruple for real impact

(a) LFP-G (b) NMC-G
Change in raw material price Change in raw material price
-100% 0% 100% 200% 300% -100% 0% 100% 200% 300%
-1.4% bal -25%
Copper +5.5% Cobalt '
6.7 $/kg) -4.2% +2.8% *o. +11.1% +16.6% (37.2 $/kg)
-2.8% -5.0%
-22% +29% -20%
Aluminium . 0.7% Nickel
7 e " @
(1.9 $/kg) 15% 1 5% (14.9 $/kg) D%, .’
Lithium  -22% (7% +30% Copper -13%
hydroxide +6.0% +9.0% 67 g /pk ) 39k +2.6% +5.2% +103%  +155%
(7.0 $/kg) 1.5% +1.5% YRS 2.6%
Lithium
hexafluoro- 6% 05% +21% Aluminium = 06% o
hosphat v © 19%kg 0O © 0%
e R IR 9%kd  Taaw | 3%
: g
ithi B, 4%
. 12% 04% +1.6% Lithium 18% g% +24
Graphite 0o o O hvdroxide +4.8% +7.2%
(2.0 $/kg) y
R 0.8% +0.8% (7.0 $/kg) 1.2% +1.2%
+1.5%
Graphite -11% -04%
Qe [
(2.0 $/kg) .-0_8% +0.8% +3.09f .
12%
Manganese 09% -0.3% ) £36%
(248kg) 0% | oe% +2.4% '
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China dominates the lithium-ion value chain

Mining Processing Manufacturing
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m China DR Congo = Awustralia = Indonesia © Europe = United States © South Korea mJapan © Russia Rest of World



	Default Section
	Slide 1

	The Need
	Slide 2: Renewables are the future of electricity generation
	Slide 3: Flexibility is needed to match Renewables and demand
	Slide 4: Electricity storage is one form of flexibility

	Technologies
	Slide 5: All storage technologies belong to five categories
	Slide 6: Battery systems have various cost components
	Slide 7: Pumped hydro most widely deployed – batteries catch up

	Applications
	Slide 8: The different technologies are used for different applications
	Slide 9: Longer duration storage needed as power system evolves
	Slide 10: Range of specific energy storage applications is much wider

	Investment cost
	Slide 11: Falling prices can be expressed by their ‘experience curve’
	Slide 12: Lithium-ion prices fall at a similar rate as solar PV
	Slide 13: Similar trends are seen across other storage technologies
	Slide 14: The tech that brings most capacity to market is cheapest

	Lifetime costs
	Slide 15: Lifetime cost of energy delivered is a more important metric
	Slide 16: Comparisons should use application-specific lifetime cost
	Slide 17: The competitiveness of technologies will change over time
	Slide 18: Depending on the applications, different technologies win

	Do it yourself
	Slide 19: All content of this presentation comes from one book
	Slide 20: All analyses can be re-produced by you! 

	Backup
	Slide 21: Lithium-ion batteries use surprisingly little lithium
	Slide 22: Raw material prices must quadruple for real impact
	Slide 23: China dominates the lithium-ion value chain


